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Abstract

For many applications, reducing sample resistance, rather than increasing probe Q or filling factor, is the only way to further
improve the signal-to-noise ratio of cryogenically cooled NMR probes. In this paper, bounds are calculated for the minimum sample
resistance that can be achieved for various sample geometries. The sample resistance of 100 mM NaCl in H2O in 5 mm sample tubes
was measured on a 600 MHz cold probe to be within 14% of the optimum value. The minimum sample resistance can however be
lowered by altering the tube cross section. Rectangular tubes oriented with the long axis along the RF magnetic field are particularly
favourable.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The signal-to-noise ratio in NMR may be written as
[1–3]

S
N

/ M0B1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT a þ T sÞP s þ ðT a þ T cÞP c

p ; ð1Þ

where M0 is the spin magnetization, Pc is the RF power
absorbed by the coil during transmit at fixed RF mag-
netic field B1, and Ps is the RF power absorbed by the
sample. Ps is proportional to to sample resistance, Rs,
and Pc is proportional to coil resistance, Rc. Ta is the
noise temperature of the preamplifier, which is of the or-
der 15 K for a cryogenic probe, Ts is the temperature of
the sample, typically 298 K, and Tc is the temperature of
the coil, typically 25 K. The relative importance of coil
resistance, Rc, and sample resistance, Rs, is determined
by the ratio a
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a ¼ T s þ T a

T c þ T a

� 8: ð2Þ

Most of the improvement in signal-to-noise ratio
through better probe technology has focussed on reduc-
ing Ta, Tc, and Pc. Reducing Pc is equivalent to increas-
ing the product Qg, where Q is the probe quality factor
(without a sample), and g is the filling factor. The ratio
Ps/Pc can be measured by comparing the Q of an empty
probe to the Q of a probe tuned and matched with the
sample present. In a Varian 600 MHz HCN cold probe
Ps/Pc was measured to be 0.74 for 100 mMNaCl in H2O
in a 5 mm tube, which is often considered a moderately
lossy sample. (In this case the empty probe Q was 1205
and the loaded probe Q was 694.) With the temperature
factor a � 8, the Ps term in Eq. (1) is about six times the
size of the Pc term. Ps/Pc was measured to be 0.10 for
D2O, so that the Ps term in Eq. (1) is 0.8 times the Pc

term even for this low loss sample. It is clear that further
reduction in Ta, Tc, and Pc will bring diminishing or no
return for many samples of practical interest unless Ps

can also be reduced.

mailto:thomas.deswiet@varianinc.com


332 Communication / Journal of Magnetic Resonance 174 (2005) 331–334
While Ps has not been the primary focus in high res-
olution probe design in recent years, it has been of great
importance in the imaging community, where it domi-
nates over Pc due to the much greater sample size
[4,5]. A general and elegant approach for calculating
the limits to signal-to-noise ratio numerically in the
imaging context is given in [6]. The point of this paper
is to consider fundamental limits on the term Ps that
can be calculated analytically for the sample geometries
and RF magnetic fields that are relevant in the context
of high resolution liquid state NMR.

The power dissipated in the sample, Ps, is given by

P s ¼
1

2

Z
rE2 dV : ð3Þ

Here the integral is over the volume of the sample, E is
the peak RF electric field, and r is the RF conductivity
of the sample including dielectric loss. The problem ad-
dressed here is what electric field E minimizes Ps subject
to the constraint that there exists the uniform RF mag-
netic field in the sample

B ¼ B1e
ix0tx̂ ð4Þ

that is necessary for good quality NMR. (Here x̂ is a
unit vector in the x direction.) How to actually design
a coil to produce the optimal electric field is outside
the scope of this paper. Rather, the intention is to dis-
cuss what coil performance is possible.

The concept that Eq. (4) applies throughout the vol-
ume of integration in Eq. (3) is an excellent approxima-
tion if the sample is physically constrained to be within
the region of high homogeneity RF magnetic field. In
high resolution NMR this can be accomplished through
the use of susceptibility compensated plugs inserted into
an NMR tube, or susceptibility compensated glass sam-
ple tubes and plungers such as manufactured by Shi-
gemi. In situations where the sample extends axially
out of the RF ‘‘window’’ of the coil it is assumed that
the transition region where the RF magnetic field drops
to zero is sufficiently abrupt that it can be neglected.
This transition region then forms part of the boundary
of the volume of integration in Eq. (3). Such an abrupt
drop of magnetic RF field at the edges of the window
represents an ideal coil for NMR since RF pulse widths
are well defined and solvent suppression works well. In
addition note that the uniform RF magnetic field in Eq.
(4) is only possible when the wavelength and skin depth
in the sample are sufficiently large compared to the
sample size. For typical liquids NMR samples this is
a good approximation. A final point about Eq. (4) is
that it is assumed that a circularly polarized RF mag-
netic field is not produced, for example using a birdcage
coil [7].

Substituting the magnetic field from Eq. (4) into Far-
aday�s Law

r� E ¼ �ix0B ð5Þ
and integrating, we obtain

E ¼ �iB1x0e
ix0tðyẑþr/Þ; ð6Þ

where / is an arbitrary scalar function of space, and ẑ is
a unit vector in the z direction. Within the homogeneous
sample volume, the electric field must satisfy $.E = 0,
from which we find / must satisfy the Laplace equation
$2/ = 0.

The problem of finding the optimal electric field for
NMR thus reduces to finding the harmonic function /
which minimizes the functional P s /

R
ðyẑþr/Þ2 dV .

Following traditional practice in calculus of variations,
consider the variation in Ps caused by a small variation
in /:

dP s /
Z

ðyẑþr/Þ:rd/dV ; ð7Þ

/
I

ðyẑþr/Þ:n̂d/dS; ð8Þ

where n̂ is a unit vector normal to the surface bounding
the sample volume. Setting the variation in Ps to zero for
all d/, we find that the optimal electric field satisfies

ðyẑþr/Þ:n̂ ¼ 0: ð9Þ
The problem is restated as finding the solution, /, to the
Laplace equation, subject to the boundary condition gi-
ven by Eq. (9). Once this solution is found the power
may be conveniently calculated from the formula

P s ¼
1

2
rB2

1x
2
0

Z
ðyẑþr/Þ2 dV

¼ 1

2
rB2

1x
2
0

Z
y2 dV þ

I
y/ẑ:n̂dS

� �
: ð10Þ

Consider cylindrical samples of length L, with circular
cross section radius r0, where the cylinder is coaxial with
the static field and z axis, and the RF magnetic field is
transverse to the cylinder along the x axis, and the origin
of coordinates is at the center of the cylinder. The opti-
mal electric field is given by Eq. (6) where the function /
which satisfies the boundary condition Eq. (9) may be
found by standard methods [8]:

/ ¼ �
X

n¼1;2;3::

2r20 sin hJ 1ðj01;nr=r0Þ sinhðj01;nz=r0Þ
j01;nðj021;n � 1Þ coshðj01;nL=2r0ÞJ 1ðj01;nÞ

; ð11Þ

where standard cylindrical polar coordinates have been
used, J1 is a cylindrical Bessel function and j01;n is the
nth zero of its derivative employing the conventions of
[9]. The minimum dissipated power is

P s ¼
1

8
rB2

1x
2
0pr

4
0L 1� 16r0

L

X
n¼1;2;3::

tanhðj01;nL=2r0Þ
j031;nðj021;n � 1Þ

" #
:

ð12Þ
It is straightforward to calculate this optimal absorbed
power for typical experimental parameters remembering
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that with proton NMR B1 can be calculated from
B1 = 2/(42.6s360), where s360 is the time for a 360� pulse
in microseconds and B1 is the peak linearly polarized RF
magnetic field in tesla. For a 5 mm NMR tube at
600 MHz with L = 18 mm, r0 is 2.1 mm, and 100 mM
NaCl in H2O (with r � 1.1 S m�1 at 600 MHz at
298 K according to [10,11]), and with a 20 ls 360� pulse,
the minimum possible dissipated power is found to be
10.2 W.

Measurements were made of the total power input at
the base of the 600 MHz cold probe mentioned earlier.
A 20 ls 360� pulse, with a sample of 100 mM NaCl in
H2O, in a 5 mm tube manufactured by Shigemi, with
the window constrained to 18 mm, required 31.0 W.
Network analyzer measurements indicate that 13% of
this power is absorbed in various connectors in the
probe before reaching the high Q probe circuit. Q mea-
surements with and without the sample indicate that of
the remaining power, 42.4% or 11.6 W is absorbed by
the sample. This is only 14% more than the fundamen-
tal minimum imposed by Maxwell�s equations. Inspec-
tion of Eq. (1) shows that even if a ‘‘perfect’’ (albeit
non-quadrature drive) probe could be built such that
both the sample resistance was reduced to the funda-
mental minimum and the coil resistance term,
(Tc + Ta)Pc, was effectively zero (using for example
superconducting coils at mK temperatures), the sig-
nal-to-noise ratio on 100 mM NaCl would only be im-
proved by 15% over the existing probe used for
measurement.

It is apparent that the signal-to-noise ratio bottle
neck is the term Ps which is directly linked to the shape
of the sample. Inspection of Eq. (12) shows that a sim-
ple approach is to reduce the size of the sample. The
minimal Ps is an increasing function of L and r0,
becoming proportional to Lr40 when L � r0. Reducing
r0, for example by using 3 mm sample tubes, is a very
effective way to reduce Ps and increase the signal-to-
noise ratio, as long as M0 remains fixed, i.e., the spin
concentration must be increased. However, for many
biological samples, the sample concentration, c, is al-
ready maximized to the highest practical level by the
spectroscopist, in which case in Eq. (1) M0 ¼ cpLr20.
In this situation both M0 and Ps decrease with decreas-
ing r0. The net effect is that signal-to-noise can be al-
most independent of r0, when the Ps term dominates
the Pc term in Eq. (1). However, as r0 decreases, even-
tually the Pc term becomes important, and the signal-
to-noise ratio drops off.

An alternative is to use samples of more general
shape than cylinders with circular cross section. For
samples of length L in the z direction, large compared
to the width in the x and y directions, then the
$/ term in Eq. (6) is a relatively small end effect
correction, and the electric field is approximately pro-
portional to the y coordinate. It follows that a dispro-
portionate amount of Ps is dissipated in the regions of
the sample at large y. It is therefore rational to con-
sider samples with large extent in the x direction, along
B1, and small extent along y. For this reason, take
cylindrical samples again of length L, but now with
rectangular cross section, instead of the circular cross
section considered initially. As with the circular case,
the cylinder is coaxial with the static field and z axis,
and the RF magnetic field is transverse to the cylinder
along the x axis. The rectangle which forms the cross
section of the cylinder is of width b in the x direction
and a in the y direction. The origin of coordinates is
at the center of the cylinder. The optimal electric
field is given by Eq. (6) where the function / which
satisfies the boundary condition Eq. (9) may be found
by standard methods [8]:

/ ¼ �
X

n¼1;3;5::

4a2

n3p3

sinhðnpz=aÞ
coshðnpL=2aÞ cosðnpx=aÞ: ð13Þ

The minimum dissipated power is now

P s ¼
1

24
rB2

1x
2
0a

3bL 1� 192a
Lp5

X
n¼1;3;5::

tanhðnpL=2aÞ
n5

" #
:

ð14Þ
The above equation shows that theminimumPs can be

made arbitrarily small, even at fixed sample volume, Lab,
by making b large and a small (see Fig. 1). In cases where
L � a, then the minimum Ps is proportional to a3b. If the
Ps term dominates the Pc term in Eq. (1) (such as for
100 mM NaCl in H2O in 5 mm circular tubes) then at
fixed spin concentration c, M0 = cLab and the signal-
to-noise ratio from Eq. (1) is proportional to

ffiffiffiffiffiffiffiffi
b=a

p
. This

is a remarkable result, since it implies that at fixed concen-
tration the maximum possible signal-to-noise increases
by reducing the sample size, a, in the y direction—even
though this means using less sample material.

In conclusion sample losses are now a fundamental
limit to the signal-to-noise ratio in high resolution
NMR, for many practical applications. These limits
have been calculated for cylindrical samples with circu-
lar and rectangular cross section. The results indicate
that rectangular sample tubes offer potentially unlimited
advantages over circular tubes. While cryogenically
cooled probes have been the main motivation for this
work, the results derived here apply equally well to tra-
ditional room temperature probes. The sample effect is
weaker in room temperature probes, but can still be
significant.

It is worth noting that in EPR and ESR of lossy sam-
ples such a strategy has already been pursued, although
the coil geometry is quite different [12]. An alternative
approach is a birdcage type probe that produces circu-
larly polarized RF magnetic field. This offers a potential
signal-to-noise ratio improvement for lossy samples over
current technology, but this is limited to a factor of

ffiffiffi
2

p
.



Fig. 1. Plots in the y–z plane of the optimal electric field and dissipated
power in the case of a sample tube of length L = 18 in the z direction,
and width a = 4.2 in the y direction. The tube has rectangular cross
section so the fields are calculated from Eqs. (6) and (13). The left plot
shows the electric field which is tangential to the edge of the sample
volume. Away from the ends of the tube the field strength, denoted by
the size of the arrow, is approximately proportional to the y

coordinate. The right plot is a contour plot of dissipated power or
E2. The contour lines are at equally spaced levels of E2 and clearly
show the ‘‘hot’’ regions of high power dissipation at large positive and
negative y coordinate.
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This approach is now standard in MRI where changing
the sample shape is not an option.

Finally, it may be of interest to consider the optimal
electric field derived in this paper in light of Helmholtz�s
theorem. Helmholtz�s theorem states that any vector
field can be written as the sum of the curl of another vec-
tor field and the gradient of a separate scalar field
F = $ · G + $H. The term $H is sometimes called the
conservative part of the field F and has zero curl, and
the term $ · G is sometimes called the non-conservative
part of the field F and has zero divergence. Because the
electric field in this paper has a non-zero curl, and a zero
divergence, it is clear that it can be written purely as the
curl of some other vector field, and can be considered
pure non-conservative. Unfortunately this choice is
somewhat arbitrary.

While the Helmholtz decomposition can be shown to
be unique for fields defined everywhere in space, the
decomposition is not unique when the field is only de-
fined for sub-regions of space such as the NMR sample
space considered in this paper. The reason for this non-
uniqueness is that for sub-regions of space there exist
non-trivial fields with both zero divergence and zero curl
which can be included in either term of the Helmholtz
decomposition. An alternative Helmholtz decomposi-
tion of the electric field to pure non-conservative is of
course given by Eq. (6), which makes the field look like
both conservative and non-conservative terms are
present.

To truly know how whether the electric field in the
sample space contains a conservative part, knowledge
of the geometry of the coil and circuit that make the field
is required. Then the electric field is known everywhere
in space, not just in the sample region.
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